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We study the evolution of the states for one-dimensional infinite harmonic 
systems, interacting through a translation invariant force of rapid decrease. We 
prove that for a large class of initial states convergence to a Gaussian limiting 
state, as time goes to infinity, is equivalent to convergence of the covariance. 
The main assumption on the initial states is a kind of weak dependence between 
distant regions (mixing condition). We prove also convergence of the covariance 
under some general assumptions. We show furthermore that there are two 
countable families of intensive constants of the motion, which are "inherited" 
from the corresponding finite systems. The translation invariant limiting states 
are in one-to-one correspondence with the admissible values of these constants 
of the motion. Moreover, under some additional regularity assumption, such 
states are shown to be Gibbs states, obtained by a "Boltzmann-Gibbs" prescrip- 
tion. 

KEY WORDS: Harmonic oscillators; convergence to equilibrium; first 
integrals. 

1. INTRODUCTION 

In statistical mechanics it proved to be very fruitful to study infinite- 
particle systems as idealized models of real (i.e., large, finite) systems. 
"Thermodynamics" holds in fact only approximately for large finite sys- 
tems. This approach has been particularly successful in equilbrium statisti- 
cal mechanics where it led to the theory of Gibbs states. 
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Nonequilibrium behavior, however, is still poorly understood. In par- 
ticular we do not know under what conditions the Boltzmann-Gibbs (BG) 
postulate on convergence to equilibrium, on which statistical mechanics is 
based, holds. According to the BG postulate we expect the probabilistic 
features of an infinite autonomous system to be asymptotically described 
for large times by a "Gibbs equilbrium distribution," i.e., by a Gibbs state 
determined by the interaction potential and, in general, by three additional 
parameters: temperature, chemical potential, and average momentum. 
These parameters are connected with the three "classical" constants of the 
motion, i.e., total energy, particle number, and total momentum (it is 
believed that for physically realistic potentials there are no other additive 
global constants of the motion). In order to give a rigorous foundation to 
the BG postulate one should first construct the time evolution for a set of 
points of the infinite particle phase space which is large enough to contain 
the support of a large class of initial states ("nonequilibrium dynamics"), 
and then prove that, under certain conditions, the evoluted states converge 
weakly to equilibrium (see Ref. 1 for a discussion of the BG postulate for 
infinite systems). The particular case in which the initial state is absolutely 
continuous with respect to a given equilibrium state can be reduced to the 
study of the ergodic properties of the ~ dynamical system," 
which is defined by the evolution of the infinite system on a set of full 
measure with respect to the equilibrium Gibbs state (equilibrium dynam- 
ics). Physically this corresponds to studying the relaxation of local perturba- 
tions. For realistic potentials even the latter task is at present very hard, 
although equilibrium dynamics has been constructed under fairly general 
assumptions. On the other hand, in nonequilibrium dynamics there are 
good results only in dimension one and two for continuous systems (see 
Ref. 2), or in special cases for lattice systems (see Ref. 3). 

In such a situation it was natural to consider some idealized models of 
particle interaction which are tractable and can teach us something on 
nonequilibrium behavior. Such models are essentially the free gas, the 
elastic hard rods in dimension one, and the harmonic oscillators. The 
equilibrium dynamical system for the free gas and the one-dimensional 
hard rods were studied respectively in Refs. 4 and 5. For the free gas 
convergence to equilibrium for initial states which are in general singular 
with respect to the equilibrium states has been sketched in Ref. 1 and 
proved in a much more general case in Ref. 6. For the one-dimensional 
hard rods convergence to equilibrium for a large class of initial transla- 
tional invariant states has been proved in Ref. 6. In both cases the class of 
the limit Gibbs states depends on an infinite number of additional parame- 
ters (a functional parameter) due to the fact that there is an infinite number 
of additional constants of the motion (the set of the initial velocities is 
preserved). 
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It is worth remembering that in the huge physical literature devoted to 
harmonic oscillators, actually infinite systems play a considerable role, 
starting with Hamilton, who considered the evolution of an infinite one- 
dimensional chain with nearest neighbor interactions (see for instance Refs. 
7 and 10). In particular, convergence to a limit (Gaussian) distribution for 
this model has been examined by Klein and Prigogine. (8) For what con- 
cerns rigorous results nonequilibrium dynamics has been constructed under 
general assumptions by Lanford and Lebowitz (9) and by van Hemmen, (I~ 
who also studied the ergodic properties of the equilibrium dynamical 
system. 

In particular it was found that, if the force matrix ~V has an absolutely 
continuous spectrum, the equilibrium dynamical system is (Bernoulli and 
hence) mixing, which implies relaxation to equilibrium of local perturba- 
tions. 

In 1977 Lebowitz and Spohn (see Ref. 11) obtained a real nonequilib- 
rium result for an infinite one-dimensional harmonic chain. They obtained 
convergence to a stationary state, starting from an initial state which is 
described far away to the left and to the right by equilibrium states with 
different temperatures. In the limiting stationary state, contrary to what is 
expected for a physically reasonable interaction, there is a steady heat flux. 

The purpose of this work is to investigate the asymptotic behavior of 
infinite harmonic systems of identical oscillators with translational invari- 
ant interactions in a general framework. We consider one-dimensional 
systems for simplicity, although there are no essential restrictions, in 
principal, on the lattice dimensions. We assume also fast (exponential) 
decrease of the interaction strength as a function of the distance between 
oscillators. We give now a short description of our results. 

We prove a convergence theorem in two steps, first proving that for a 
large class of initial states convergence to a stationary Gaussian state is 
equivalent to convergence of the covariance (Section 3), and then giving 
sufficient conditions for convergence of the covariance (Section 4). In the 
first step a crucial assumption is a condition of weak dependence between 
distant regions in the initial state (mixing condition). Since the oscillator 
dynamical variables (i.e., qi and p;) at time t are written as a linear 
combination of the initial positions and velocities with uniformly small (for 
large t) coefficients, the proof that convergence of the covariance implies 
weak convergence of the states appears as a limit theorem for sums of 
weakly dependent random variables (r.v.'s). The situation recalls the case of 
free fermions, in the work of Lanford and Robinson. (~2) Moreover, linear- 
ity implies that conditions for convergence of the covariance can be given 
in terms of the initial covariance only. We consider the situation in which 
the initial covariance far away to the left and to the right is near to some 
translation invariant, in general different, limiting covariances (which gen- 
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eralizes the case of Lebowitz and Spohn), and the case of spatially periodic 
initial covariance. 

In the last section (Section 5) we prove that there are two countable 
families of "intensive" constants of the motion, which are defined almost 
everywhere and are almost sure functions with respect to a large class of 
states (among the assumptions on the states a crucial role is again played 
by a mixing condition). In physical terms the elements of the first set are 
the Fourier components of the energy density of the "normal modes" in the 
Brillouin zone [-~r,~r]; the elements of the second family are connected 
with the degeneracy of the characteristic frequencies which appears already 
in the corresponding finite system. 

It is interesting to remark that even if these constants of the motion are 
almost sure functions, the values which they assume in the initial state do 
not necessarily coincide with their values in the limiting Gaussian state 
[however, they do coincide if the initial state is spatially homogeneous 
(translation invariant)]. This is because, by considering weak convergence, 
we look at the "local" behavior of the system as t ~  oe. (The specific 
entropy of the free gas behaves in a similar way, see Ref. 1.) 

Finally, in the Appendix we give the proofs of some estimates on 
oscillating integrals which are used in the text, 

2. NOTAT IONS AND PRELIMINARY RESULTS 

Throughout this paper we denote by Z+ = (k E ZIk  > 0) and by 
R+ = (x E RZ[x > 0) the positive integer and real numbers, respectively. 
By ~+ = 7/+ U {0) and R+ = R+ U (0) we denote the corresponding non- 
negative sets. The Euclidean norm in R n is denoted by ] �9 [, the Lp norm of a 
random variable ~ (p > 1, not necessarily integer), by I[~ll;. The Fourier 
(anti)transform of a square summable sequence (fk E C)k e Z is denoted by 
f(0), 0 ~ [-~r,~r] :f(0)  = ~kEZfkexp( ikO) .  Finally, as usual, we denote by 
(., .) the scalar product in a Euclidean space, and by ( )T matrix transposi- 
tion. 

Consider an infinite system of oscillators on the line R ~, such that the 
kth oscillator, k ~ 77, has its equilibrium position at k. We denote by 
qk ~ R~, Pk ~ R1, respectively, the displacement from the equilibrium posi- 
tion and the momentum of the kth oscillator. By x k ~ R 2, k E Z we denote 
the vector with components Xk (1) = q~, Xk (2) = Pk" 

DefiniUon 1.1. The phase space of the infinite oscillator system is the 
set % of all the sequences x = (Xk)k e ~ with Xk E R 2. 

Endowed with the natural topology of coordinatewise convergence, % 
is a polish space. If N C_ Z is a subset of the integers we denote by ~3 N the 
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smallest a algebra of subsets of % with respect to which the coordinates 
x~ ~), k E N ,  a =  1,2 are measurable. If N =  (k  E T/l k >/ h} ( N = ( k  
E Z ] k  < h}), h E 77, we shall write ~3~ -~ 03"-00) instead of ~3 s .  The o 
algebra ~3~ is denoted simply by ~3. ~3 coincides with the Borel a algebra of 
% with respect to the natural topology. O) 

Definition 1.2. By a state P we mean a probability measure on the 
measurable space (%, ~3). 

If the oscillators interact with a quadratic potential (harmonic approxi- 
mation) and they have all the same mass (equal to one) the equations of the 
motion can be written formally as 

q (t) (2.1) 
Pk(t)  = - Z %~,hqh(t) 

h ~ Z  

where % =  (%~,h } k E Z, h E Z is a symmetric matrix called the force 
matrix. We can write Eq. (2.1) as a differential equation in %: 

s x(t)  = Ax(t)  (2.1') 
dt 

where (Ax)g =(Pk,--~h%l,,hqh)" The problem of dynamics consists in 
finding a solution of Eq. (2.1') for a given initial condition 

x(0) = x 0 (2.2) 

Before discussing this problem we state our assumptions on the force 
matrix. 

Assumpt ion  I. % is symmetric and translation invariant, i.e., 5f~, h 
= V~_ h for some even sequence { V~ } ~ ~ z. 

Assumpt ion II. There are two positive constants ct, c 2 such that for 
all k E Z the following inequality holds: 

t V~I ~< c~exp(- c2lkl) 

Assumption III. The "dynamica l  func t ion"  w2(0)= / 2 ( 0 ) =  
~ k E z V k e  ik~ is bounded away from 0, i.e., rain0 El_~,~]o~2(0) > 0. 

Note that Assumption II implies that c02(0) is an analytic periodic 
function of 8. Assumption III is equivalent to the requirement that the 
spectrum of ~V as an operator on 12(77 ) is positive and bounded away from 
0. This assumption is important in the one-dimensional case, since other- 
wise we would get into difficulties connected to the fact that the equilib- 
rium state does not exist in the ordinary sense (see Ref. 9). Assumption II, 
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on the other hand, is made only for simplicity: exponential decay could be 
replaced by a sufficiently rapid power decay. 

The existence of dynamics is stated by the following theorem which is 
proved in Refs. 9 and 10. 

Theorem 2.1. Let %' = (x ~ % I supk~Z(IXkl2/(k 2 + l) m) < + O0 for 
some m ~ ?7+ }. Then if the force matrix 55 satisfies Assumptions I and II 
and x 0 E %' there is a unique solution x(t)  of the initial data problem 
(2.1')-(2.2) such that x(t)  E %' for all t E R'. 

The solution is linear in the initial data: 

x(t)  = % x 0 (2.3) 

the evolution matrix %t being given by 

(%,x)~= ~ ~k_h(t)Xh, x ~ %' (2.4) 
h E ] [  

and ~k  (t), k ~ ?7, t E R' are the Fourier coefficients of the function matrix 

 0,t) = cos[ (0)t] sin[ (0)t] 
* o,(0) (2.5) 

- o~(O)sin[r cos[o~(0)t] 

[Note that ~ is analytic in 0 and therefore the series in Eq. (2.4) converges 
absolutely for x e %', and x(t)  ~ %' for all t E ~1.] 

We have now a one-parameter group of transformations of %' into 
itself in terms of which we can define the evolution of initial states. 

Definition 2.3. If P is a state such that P ( % ' ) =  1 we shall call 
evolution of the state P for the harmonic dynamics with matrix force 55 the 
family of states {Pt, t E R l } given by 

/ ' , (A) = n % %  A e t e R 

where % ,  t E •1 is given in terms of 55 by Eq. (2.4). 

We conclude this paragraph by giving some results of the theory of 
stochastic processes. 

Let P be a state. The function a e :?7+ ~ +  given by 

a e ( h ) = s u  p sup I P ( A N B ) - P ( A ) P ( B ) I ,  h~7 /+ 
k ~ Z  A E ~ 3 ~  k 

B E?Bk-o~ 

is called the strong mixing coefficient of P. If limh_~ + ooai,(h ) = 0 the state P 
is said to be strong mixing. The following result can be proved by an easy 
adaptation of the proof of Theorem 17.2.1 of Ref. 13. 
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P r o p o s i t i o n  2.1. If the random variables ~, ~/ are measurable with 
respect to the o algebras k + ~o ~3-0o and ~3h+k, k E Z, h ~ 7/+, respectively, and 
moreover I~l < N, I~/] < M P-almost everywhere, the following inequality 
holds: 

I~p~ - E~Ep~ I < 4 N . M a e ( h  ) (2.6) 

(If ~ and 7/are complex functions 4 is replaced by 16.) 

For unbounded random variables we need the following result, which 
is a modification of Theorem 17.2.2 of Ref. 13. 

P r o p o s i t i o n  2.2. If the random variables ~, 7/ are measurable with 
respect to the a algebras ~k and + oo - ~ ~h + ~, respectively, k E Z, h E Z +, and 
moreover ~ ~ Lr(%,P  ), 71 ~ Ls(%,P) ,  with r,s ~ R+ such that g = 1 - 
r -  l _ s - ~ > 0, the following inequality holds: 

l e e @ -  Ee~Ee~[ < 101[~llrll~l[s(ae(h)) g (2.7) 

Proof. Set ~1 = ~/11~[I. nl = ~/l l~l ls-  If ~ is a r.v., we define the 
truncated variable ~(N), N ~ ~+ by setting 

[ 0 if I~l>N 
Setting ~ = ~1 ~N) + ~1 ~re), */1 = ,/~N)+ ~N) we have by Proposition 2.1 
IEp~N)TIq M) -- Ep~N)Rp~lqM)I < 4NMc~e(h ). Moreover,  ~1~5~>1 < 
N~-~f~l~, lre(dx  ) = N ~-r, and, similarly, EeI~M)I < M ~-s. Therefore 
e ~ t ~ M > t  < N M  ~-~ and ~ I ~ M ~ I  < M N ' - ' ,  Furthermore, choosing 
p,q ~ a + ,  p < r, q < s, such tha tp  -1 + q - ~  = 1, we have  IEe(~N~I~ M~) 
< N z - r / e M  ~-s/q, since II~N)llp < N~-~/~f~I~,I~P(d~) < N 1-r/q, and sim- 
ilarly, II~M)llq < g ~-~/q, Therefore we find 

l e ~ ( ~ 0 ~ ' ) ) -  e ~ e ~ )  I + l e ~ ( ~ > ~  ")) 

- e ~ ~ , ~  I 

+ t e , ( ~ : ~  "~) - e~$~"~e~,~M~l + l e , ~ ( ~ " ~  ~'~) - e , . :~:"~e,~'~l  

< 4NMaP(h )  + M N  ~-~ + M ~-~ + N M  ~-~ 

+ N ~-" + N l - r / p M l - s / q  + N ~ - ' M  ~-~ 

Setting N = fore(h)) -r-' ,  M =  (ae(h)) - f '  (which implies N , M  >1 1), it is 
easily seen that 

I ~ ( ~ 1 ) -  ~ , e ~ , ~ l  < 10(~(h)) g 
Going back to the original variables ~, ~/, we find inequality (2.7). [] 
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If P is a state such that ~-e[Xk[ 2 < oO for all k ~ Z, we denote by 
C e = (Ce(h,k)}h,g~ Z its covariance: Ce(h,k ) is a 2 • 2 matrix with ele- 
ments 

= - B = 1 , 2  

Let P be a state such that EplXkl 2 < ~ for all k ~ Z. If Eex k = a for 
all k E g and some fixed a ~ R 2, and the covariance Ce is translation 
invariant, i.e., Cp(h + 1,k + 1) = Ce(h,k ) for all integers h,k, the state P is 
said to be translation invariant in the wide sense. Translation invariance in 
the strict sense means invariance of the probabilities of local events with 
respect to translations. The two notions coincide for Gaussian states. (In 
probabilistic literature the term "stationary" instead of "translation invari- 
ant" is generally used. Here we call "stationary" the states which are 
invariant with respect to time evolution.) Clearly any positive definite 

n - (~,~) double sequence C = (C(h,k)}h,gEz, i.e., such that ~,ij=ltitjC , ~ (ki,kj) 0 
for any choice of n E Z+ ,  of the complex numbers t i and of the indexes 
k i E 7], ai = 1, 2, i = 1 , . . . ,  n, is the covariance of some state. We shall call 
such a sequence a "covariance" even if there is no reference to an 
underlying state. 

If a state is translation invariant in the wide sense, its covariance can 
be represented in terms of the spectral measure. (~3) More precisely, let 
Ce(h,k) = Re(k  - h), h ,k  ~ Z be the covariance of such a state. By the 
Bochner theorem there are four complex functions of bounded variation 
{F (~'r },.B=l,2 defined on [ -  ~r,~r], such that R e =/~, i.e., 

R~'r  ff,  e 'kXF(~B)(dx), a, f l = l , 2 ,  k f f Z  

F is said to be the spectral measure of the state P. If A c [ - ~r, ~r] is a Borel 
set, the matrix F( • )=  (F(~'/~)(A)}~,a=I,2 is self-adjoint and positive defi- 
nite. If the functions F (~'~) are absolutely continuous with respect to the 
Lebesgue measure, with densities f(~,B), a , /3  = 1,2, the matrix f =  
{f(-,B) },,r 1,2 is called the spectral density of the state P. 

We conclude with a result concerning the evolution of the covariance 
under harmonic dynamics. 

Proposition 2.3. Let P be a state such that E e(Ixkl 2) < K(1 + k2) n, 
for some n ~ 7/+, K E R+ and all k ~ Z, and let ~V be a force matrix 
satisfying Assumptions I and II above. Then the state Pt, t ~ R 1, defined by 
Definition 2.3, is such that E ,(Ixf) < K(t)(1 + k2) ~ for some constant 
K(t) and all k ~ 7], and the covariance Ce, is given by 

Ce,(h ,k)= ~,  ~h_, ( t )Cp( l , l ' )~r_ , , ( t )  (2.8) 
1,1" ~ ~_ 
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Proof. It is easy to see that if P satisfies the condition above 
P(%')  = 1, and therefore Pt makes sense for all t ~ R 1. Furthermore we 
have 

E,,(lx~l 2) = E , ( l ( % x ) f )  = E E~(%_h(t)x~,%_h,(t)Xh,) 
h,h" E77 

Setting 

2 
Rff(t) = ~ (6~[,(a'fl)) 2, k E Z, t E R 1 (2.9) 

a , f l=  1 

it follows from the assumptions on % that (Rk(t))k~ z is a sequence of 
rapid decrease. Since ]~k-h (t)xh[ < Rk--h(t)lxhl we obtain 

Ee,(lx~] 2) < E Rk-h(t) • Rk-h'(t)Ee([Xh'[ 2) <~ K(t)( k2 + 1) n 
h E Z  h ' E Z  

where K(t) is some constant independent of k and the last inequality comes 
from the fact that the convolution of a sequence which is O((k 2 + 1) n) with 
a sequence of rapid decrease is again O((k2 + 1)n). This implies that the,  
covariance Ce, exists. On the other hand it is easy to see that 

2 

= ~ ~ ~'~)(t)~(B-';)(t)C(eV'v')(l,l ') 
L I ' ~ Z T ,  y ' = I  

which is the same as Eq. (2.8). �9 
We shall use the following notion of covergence for the covariance. 

Definition 2.4. Let t o be a point of the extended real line, we shall 
say that the family of covariances {Ct, t E R r} converges, as t ~  t o to the 
covariance C whenever 

lira c, (~,~) (h, k) = C(~,~)(h, k) 
t---~ t o 

for all a, fl = 1,2, h, k E 7/. 

3. THE CONVERGENCE THEOREM 

We shall prove the theorem under an additional technical assumption 
on the force matrix q; which greatly simplifies the estimates. 

Assumption iV. The set of the points 0 E [-~r,~r] for which ~0"(0) 
= ~'"(0) = 0 is empty. 
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Theorem 3.1. Let P be a state such that 

(i) T-ex k = 0 for all k E Z, 

(ii) sup~_p]Xkl4+h< ~ forsome h > 0 ;  
kEZ 

(iJi) ~a h. (ae(h))X/4+x < ~ if ~, < 8, or 
h~E+ 

h 2 a e ( h ) < ~  if n > 8 .  
h~Z+ 

Then if the force matrix ~ satisfies Assumptions I - I I I  of Section 1 and 
Assumption IV above, the states I t ,  t ~ R 1, associated to P by Definition 
1.3 tend weakly, as t---> ~ ,  to the Gaussian state G with covariance C a if 
and only if the covariance C e converge, as t ~ c~ to C G. 

Proof. We shall first prove necessity and then sufficiency. In the 
course of the proof we denote by c 1, c: . . . .  different (in general) absolute 
constants. 

Proof of Necessity. Since the covariance is not the expectation of a 
bounded continuous function, convergence of the covariance does not 
follow from weak convergence of the states. We shall prove the result by an 
uniform integrability argument, which is based on the following estimate: 
there is a constant c~, such that 

ept(IXkt 4) ~ C 1 , 

We have 

k E Z ,  t E R  1 (3.1) 

a,B=l 

Fixing a and fl and setting ah(t ) = (~k -h  (t)xh)(~), bh(t) = (~k -h  (t)Xh)(~) 
we get [see Eq. (2.4)] 

= e (ahbh) +   (ahb b, + 
h,l 

+ y/e (a b  + a b a,b,) 
h,, 

+ E '  Ee(a~bzbm + a, ahb, b,, + aha, b~) 
h,l,m 

+ ~ '  gZe(aha, bmb,) 
h,l,m,n 

where the indices h, l ,m,n ,  run over 7/ except that ~ '  indicates that 
summation is over distinct indices. We begin by estimating the four-index 
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term. We consider only the sum for h < I < m < n, since the other possible 
orderings are estimated in the same way. Using Proposition 2.2 and the 
H61der inequality we get 

[EP(aha+bmb.)l < IOH ahalbm [1(4+~)/3 [[ b. []4+x(ae (n - m)) n 
4 t t t t -< 10c2RhRzRmRn( p(.- m))' 

where c 2 = supk~llx~ll4+x, RX(t) = Rk-h(t), ~ = X/(4 + X). Setting d = 
sup, e ~ k e z R ~ ( t  ) ( d <  0% from the assumptions on ~V), j~ = l - h ,  J2 
= m -  l, J 3 - - n -  m, using the Schwartz inequality for the sums over 
j2 and h we get [notice that if X >  8 ~hez+hZae(h)< ~ implies 
Xh~+h(ap(h ) )  "~ < o0] 

E E E [(Ee(ahah+j,bh+jl+j2bh+j~+jz+.,+3)[ 
h E 1  j ~ > O  jl, jz 

0 < j l ,  j2 <<- j3 

lOc4a 2 X 
j 3 > o  

In the same way we obtain that 

~_~ ~ ~,, [F-e(ahah+j,bh+j~+/2bh+j~+j:+j,)]< Cx 
hEZ j~>O j2,j3 

0 <j2, j3  -<-< j l  

If J2 > max(j1, j3) we use the inequality 

[f-e(at, a, bmb,,)[ < I~-p(aha,)~_e(b,,,b,)l + lOc4R/,R[R~R,',(ap(m - 1)) ~ (3.2) 

Using again Proposition 2.2 we find 

X ~ [~e(ahah+/)[ <<" c4, X X Ir-p(bhbh+j)[ < c4 
h~Zj>O h~Zj>O 

where 

c 4 = lOc~d 2 (~w (j))(2+xs/(4§ 
j > 0  

so that from inequality (3.2) we get 

X X X [Ee(ahah+j,bh+/,+g:bh++,+/:+j:)[<<-c3+c~=c5 
h ~ Z  j 2 > O  j~,J3 

0 <j~, j3 < j2 

Taking into account all the possible index orderings we see that the 
four-index term is less in absolute value than 4!(2c 3 + c5). The proof that 
the three- and two-index terms are bounded by an absolute constant is 
done in a similar way. For the one-index term it is obvious. Inequality (3.1) 
is proved. 
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Consider now the new variables 

if Ixj(~)[ < K 

xj(.~O/K) if Ix)~)IE[K,2K) a = l , 2 ,  K ~ R +  

if 14 )1 > 2K 

(3.3) 

Setting 2j (x) = xj - x) K), j ~ Z, we have, using inequality (3.1) Ee,(12)K)[ 2) 

< ~ a / K ,  which implies that for all j ,  h ~72, a, fl = 1,2, t E ~  1 

Ife,(x)~)x(~)) - Ee,((x)~:))'~)(x(K))(~))l <<, c~/K (3.4) 

On the other hand weak convergence implies that for all j ,  h E g, a, i3 
= 1 , 2  

= ( 3 . 5 )  

since Xk (K), k E 72, are continuous bounded functions on %. By standard 
arguments it is easily seen that inequality (3.4) and equality (3.5) imply 
convergence of the covariance. Necessity is proved. 

Proof of Sufficioncy. We prove first convergence to a Gaussian 
distribution for the single variables X(k~)(t) = (%t x)(k ~), k ~ 7], a = 1,2. With- 
out loss of generality we can consider the variable X(oi)(t)= qo(t) and 
assume that  t ~  +oo.  We assume that  the limit dispersion a 2=  
limt~+ ~Et, (q~) = limt_~ + ~ Ep([q0(t)] 2) -- c(l ' l)(0, 0) is positive, since if a 2 = 
0 the limit variable is obviously (degenerate) Gaussian. qo(t) is a linear 
combination of the r.v.'s x k, k ~ 72: qo(t)= Y, ke~(~k(t)Xk) (~ AS a first 
step we replace the r.v.'s x k by the truncated variables yk (K) = Xk (K) -- 
E pXk (K), k ~ 7?, where Xk (K), K ~ R+,  is defined by Eq. (3.3), and prove a 
central limit theorem for the r.v. ~(t) = ~ k E Z ( ~ _ k  (t)y(kX)) (0 . The proof is 
based on a variant of a standard technique of Bernstein for sums of weakly 
dependent r.v's, The inequality 

Rt(t ) <~ e / ( l  + IriS/3), l ~ 7/ (3.6) 

which follows by Proposition A.3 (Appendix) from the assumptions on the 
force matric %, shows that ((t) is a sum of "uniformly small" r.v.'s, and 
plays an important role in the proof. 

Let fl ,~:R+---)7/+ be two nondecreasing functions such that  
lim,~+oo flU) = limt-~+ooS(t) = + oo and moreover that (a) flU) = o(tl/2), 
(b) t l /aS(t) / f l ( t )= o(1). Two such functions can be constructed in the 
following way: 

Let s : R+ --> R+ be a nondecreasing function such that l i m ~  + oos(x) 
= + oo and setf(x)  = x6s(x), 8 __f - l ,  where f - 1  is the inverse function of 
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f .  Set fur thermore  /~(x) = 83(x)[s(g(x))] b for some b E (1 /3 ,  1,2), and  
g(x) = x3%,([x]). Since x = 86(x)s(g(x)) we have  /~(t) = 
tl/2[s(g(t))] -1/2+b, 6(t)ti/3/fl(t)=[s(8(t))] 1/3-b and  [t/fl(t)]al,([8(t)]) 
= [s(8(t))]l-bg(8(t)). F r o m  Assumpt ion  (iii) of our  theorem it follows that  
limx__,~ g(x) = 0. [This is easily seen if ~t > 8. Fo r  ?t < 8 it is p roved  in the 
same  way  since then ~,hez+h(ae(h))X/4+~< oo implies ~,hezh2ae(h) 
< oo.] Therefore  if we take as s a nondecreas ing funct ion diverging at  + oo 
and  such that  s = o(_g -l/1-b) it is easily seen that  the funct ions flU) 
= [/~(t)] and  8(t)  = [8(0]  have  the required properties.  

Setting ak(t) = (~tL k(t)y(kK))(1) = (~ (1) we have  ~(t) = 
~geza~(t). The dispersion D~(t) of ~(t) is bounded  uni formly  in t (and in 
K) :  in fact  using Proposi t ion 2.2 we have  

D~(t) = Ee([~(t )]2) = ~ Ee([a~(t) ]2) + ~ ,  Ee(a,(t)ah(t)) 
I ~Z  l,h @Z 

< c~d(1 + 20d ~ [as(j)](2+x)/(4+x)) = e 6 
j>o 

Moreover ,  as we shall see later, for  K and t large enough, D~(t) is b o u n d e d  
away  f rom 0. 

Let  "7 = maxe e[ . . . .  l~o'(O) [clearly `7 > 0 and  `7 = - min  e e[ - ~,,q ~0'(0)]. 
Choose  3' > "7 and  consider the sets 

l ( t )  = ( j  e 7/: [ - "It] < j < [ ' / t ]  } 

I~(t) = ( j  e 7/: (2r - l ) f l ( t )  + 1,3(t) < j < (2r + l ) f l ( t )  + vS(t)} 
~(t) 

s(,) = I(,)\ f (O 
where x(t)  = ([yt  - fl(t)]/[2fl(t) + 8(t)]} and  corresponding sums are 

At(t) = 2 a m ( t )  
m ~ It(t) 

~,(t)  = ~ an(t ) 
m ~ 7/" l(t) 

~2(t) = ~ am(t) 
m~J( t )  

W e  have  8(t) = ~(t) + 8~(t) + 82(t) with ~(t) = ~r(t__)_~(ty4r(t) and  

I~(t)l << ~ 1%(01 < g ~a Rm(t) 
m E Z\I(t) m ~ Z\l(t) 

[F:P([#2(/)]2)< 2 ~-P([am(t)]2) -I- ~a' llFetam(t)am'(t))l 
m @ J(t) m,m' e J(t) 

< t - 2 / 3 ' J ( t ) l K 2 c 2 [ l +  8 j ~ > o a p ( j ) ] =  c 7 t - 2 / 3 l J ( t ) '  
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where IJ(t)[ is the cardinality of the set J(t) and we made use of Proposi- 
tion 2.1 and inequality (3.6). By Proposition A.2 

lim ~ R re(t) = 0 
t---~ + oo m E T/ \ l ( t )  

and, since [J(t)[ < 2[/3(0 + ~(t)8(t)], by conditions (a) and (b) on the 
functions fl and 8, limt_~+~t-E/3[j(t)[ = 0. Therefore the random variable 
~l(t) + ~2(t) tends to 0 in L2-norm as t---> + oo and the central limit theorem 
for ~(t) holds if it holds for ~(t). 

Using Proposition 2.1 2x(t) times, and recalling condition (c) on the 
functions fl and 8, we have, for all ~- E R 1, 

~(t) 
~e(exp[ h'~(t) ]) - IX ~-e(exp[i'rAr(t)]) 

r = - ~(t) 

< 1612~( t )+  1]ae(8( t ) ) - -~0 as t - -~+oo 

Therefore if we introduce the r.v. ~(t) = ~(t=)_~(oA~(t), where the new r.v.'s 
.4r(t), r = - r ( t )  . . . . .  x(t), are independent  and Ar(t) has the same distri- 
bution of Ar(t ), its limiting distribution, if it exists, coincides with the 
limiting distribution of ~(t). Moreover, using the infinitesimality of ~l(t) + 
~2(t) we have 

[O~(t) - Og(t)[ < IO~(t) - O~(t)l + IDa(t) - O~(t)l  

~(t) 
= o(1) + ~,, ~-e(A~(t)Ae(t)) 

r , r '=  -- ~(t) 

< o ( 1 ) + 4 K  2 ~ R,n(t)Rm+j(t)ae(lJ[) 
j , m E Z  

IJl > 8(0 

= o(1) + 4dK 2 ~ ae(ljl)-- o(1) 
IJl > ~(t) 

We can now prove that  the Lindeberg condition for the r.v. ~(t) holds, i.e., 
that 

K(t) 

lim ~ fl~ z2dF/= 0 (3.7) 
t--~" + oo r = - -  K(t)  i >  e ( D ~ ( t ) ) l / 2  

for any e > 0, where Ftr denotes the distribution function of the r.v. Ar(t ). 
This implies that the r.v. g(t)/[D~(t)] 1/2 tends in distribution to the normal  
law, and hence the same is true for the r.v. ~(t)/[D~(t)] 1/2. 

In order to prove that  Eq. (3.7) holds we first prove that  there is an 
absolute constant  c 8 for which 

max ~_e(IAr(t)] 6) < c8fl3(t)t -2 (3.8) 
]r] < K(t) " 
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It is easy to see that 

]F p([ Ar( t) ]6) : Hr( t ) § E ~2p(41ak2ak3ak 4 JW dl4ak3ak4) 
kl . . . . .  k 4 E  I t ( t )  

+ 2 '  
k 1 . . . . .  k 5 ~ l , ( t )  

+ 2 '  ee(ak,, . . . .  ak~) 
k 1 . . . . .  k 6 U_ l r ( t  ) 

where Hr(t ) is a sum of three-, two-, and one-index terms, each of which is 
less than K6c6[2fl(t)]3t -2. We now show how to prove such an estimate for 
the six-index term. For  the other terms the proof is similar. We can 
consider only the sum for k~ < k 2 ( �9 �9 �9 k 6. Proceeding in analogy with the 
proof of inequality (3.1) we set k I = k, ki+ 1 - k i =ji, i = 1 . . . . .  5, and 
split the sum according to which of the j / s  is the largest. We get for 
instance the estimate 

E+ 
kjl . . . . .  j5 

m a x ( j l  . . . . .  j4)  < j5  

[Ee(akak+/,''" ak+J,+.h+ "'" +/~)1 

< 4K6r y3r) 
k , j l  �9 . . j 5  

m a x ( j 1  . . .  j4) <~ j5 

<. 4K6c6t-212fl(tl]3E j2ap(j)= c'8t-2[/~(t)] 3 
j > o  

where ~( ' )  denotes the sum over all indicesjp ,J5 such thatji  > 0 
- I  ' k d  l . . . . .  J5  " " " 

and k,k +j~ E Ir(t), i = 1 , . . . ,  5. For the other orderings of theji 's, terms 
containing products of expectations may appear, which are treated by 
repeated application of the same method. 

Since D~(t) is bounded away from 0 for t large enough, so is Dg(t), so 
that we have 

flz z2 dr;' (z) < 
I >  e [ D ~ ( t ) ]  1 /2  

l fz6dF/ ~4t-2f13(t) 
e4[ D.~(t)] 2 (z) ~< 

and hence 

~(t) 
( z2dFt(z) < [ 2 x ( t )  + 1]~4t-2f13(t ) 

r = - ~ r ( t )  J [ z [  > ~ [ D ~ ( t ) ]  1 /2  " " 

= O(fl2(t)t -1) = o(1) 

which shows that the Lindeberg condition is satisfied. 
Consider now the original variable qo(t). Since ~( t )= ~ k ~ z [ ~ k ( t )  

y(kK)] (1), setting 6k(K)(t) = [ ~  (t)~k(~:)] (1) and ~(K)(t) = ~k~X[6~(K)(t) -- 
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Ee(~ff:)(t))], we can write qo(t) = ~(t) + ~J(K)(t). We have, applying again 
Proposition 2.2 

~< 10a~/2 (IJ - h:I)Rj(t)Rh(t)I[~(K)IhlIX~K)II4 

< lO(c~/KX/2)ale/z ([j -- hl)Rj(t)Rh(t ) 

Therefore 

~-e(rl(r)(t)) 2= E Ee(a~K)(t) - Eea~X)(t)) 2+ E '  (Ee~t)K) (t)a(hK) (t)) 
k ~ Z  j , h ~ Z  

- Ee(~j(K)(t)Et, zt(K)(t)) <<. c lo/K 2+x + c l , / K  x/2 

which proves that 71(K)(t) is uniformly small in L a sense. It follows in 
particular that for K large enough the dispersion D~(t)= Ee(~(t)) z is as 
close as we want to Dqo(t ) = o2(0, and, since o2(t) tends to a positive limit, 
Df(t) will be eventually positive. By the previous result we have 

tlim E eexp(/r  D ~(t)]1/2) ---~ e x p ( -  ~'2/2) 

But, if t is large enough 

[ Ee(exp (ir D~(t)] 1/2 ))  _ exp[ i'rqo ( t ) /o( t)][  

< 1r ~_el~(t)/[D~(t)] ~/2_ qo(t)/o(t)  I 

<[ l'rl/o(t) ]ll~(m(t)ll2 + l'r[ I[ O~(t) ] ~/z- o(t)l [l~(t)l[2 

This implies that limt_~o ~ ~:eexp[i'rqo(t)/o(t)] = exp( -  r2/2), for all ~" E R 1, 
and proves that the r.v. qo(t) converges in distribution to a Gaussian with 
mean 0 and dispersion o 2. 

Now the same considerations can be used to prove that any finite 
linear combination n Oxi) E i = l S i ( ~ t X ) k  i , Si ~ ~1 ki E ~, ot i = 1,2, i = 1, . . . , n, 
converges in distribution to the appropriate Gaussian if the covariance 
converges. This implies that the state Pt converges weakly to G as t---) + oo. 
Theorem 3.1 is proved. �9 

To conclude the section we make some comments on the assumptions. 
Strong mixing, as a criterion of weak dependence of far away regions, is 
natural enough. The stronger condition of uniform strong mixing, which 
perhaps simplifies the proof, seems too restrictive, since, for instance, for a 
translation invariant Gaussian state it implies that far away variables are 
uncorrelated.(13) The interplay between the integrability condition and the 
decay rate of the mixing coefficient [Assumptions (ii) and (iii)] is clarified 
by Proposition 2.2, which is an essential ingredient of the theorem. Finally 
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note that the zero mean condition (i) cannot be simply removed: if for 
instance in the initial state ~-pX, -- a, j E 77, for some a ~ R 2, a v ~ O, ~-eXo is 

�9 �9 �9 J 

a periodic function. In such a case one should consider the centered vari- 
ables�9 

4. SUFFICIENT C O N D I T I O N S  FOR C O N V E R G E N C E  
OF THE COVARIANCE 

Theorem 4.1. Let c be a covariance such that 

(i) [C(~"Z)(h,h + k)l < Y(lk[), a,fl = 1,2; h,k  E 7/ 

where y : Z +  -->R+ and ~ k e z j ( k )  < oo, and 

(ii) lira C(h,h + k) = R ,  lim C(h,h + k) -*g- L , k E Z 
h--~ + oo h - - -> -  oo 

Let qf be a force matrix satisfying Assumptions I - I I I  of Section 2, and 
~t(0, t) be the function matrix associated to ~ by Eq. (2.5). Then the 
covariance C t, given by 

= : , , ~ v  "t" (4.1) Ct(h,k) ~ ~ h - j ( t ) C ( j , J )  k-j't, ) 
j,j'eg 

converges, as t o  + 0% in the sense of Definition 2.4, to the translation 
invariant covariance with spectral density f =  f l o  + f12), where 

r iO(0)  = �89 ( :+ (0)  + C(O):+ (O)~r(O)) 

](2)(0) = i sgn(r (O)~T(O) - C{O):_ (0)} 

with 

( 0 lj 0 ) 
A + and ~ (0) are the functions with Fourier coefficients ~- = i R 

k ~ 7/, respectively. 

Before going to the proof, we remark that the limiting covariance is 
stationary under the dynamics induced by ~ (see Ref. 11). Namely, 
f(I 'O(O) and f(2'2)(0) are real even functions and f ( l ' l ) ( o ) =  0~-2(0) 

" ( 2  2)  �9 ^( l 2)  . . . .  ^( l 2)  f ' (0), while f ' (0) ~s a purely imaginary odd function and f ' (0) 
^ ( 2  1) - I I  - - = - f  ' (0). In fact, since , (II = R,L)  is the covanance of a real 

process, the corresponding spectral density satisfied the relations 

7 
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Proof. Setting C(1)(h,k)= + and a'k_  h 

CO)(h,k) = for h = 0 
t -  4--h for h < 0  

h,k E Z, we can write C = C (1) + C (2) + C (3), and, correspondingly, C t 
= Ct (1) + Ct (2) + Ct (3). W e  s h o w  first that limt_+ooCt (3) = 0. We fix h,k ~ Z 
a n d s e t ~ . ( t )  ~,,,ez~h_,(t)C(3)(n,n �9 r = + j)ea k_._y (t) so that 

C}3)(h,k) = 2 ~.(t) (4.2) 
jEZ 

From assumptions (i) and (ii) it follows that l(~)(<~)l  < v(lki) and 
I(C(3)(h,h+k))(~'r <27(Ik[) ,  k E Z + .  Setting, as in Section 2, d 
= suPteR,~kezR~(t ) [see (2.9)], we get for all t ~ R 1 

I(qj(t))(~'B)l < 23'(Ijl) ~ Rh-t(t)R~-t- j( t)  < 2dy(Ijl), a, fl = 1,2 
lE?7 

which shows that the series (4.2) converges uniformly in t. Therefore it is 
e n o u g h  to prove that limt_++oo~(t ) = 0  for each j E 7/. Since lim,_+_+o~ 

C ( n , n + j ) = O ,  it is possible to find N ~7/+ so large that I(C O) 
(n,n +j))<: 'e)  I < e / d  for n > N, which implies ~,,[ll<Nl(O'~Lh_l(t)C (3) 
(I,l +J)%~-t-y (t))(:'/~)[ < e. On the other hand inequality (3.6) implies 
that limt__>~o~qll<NO'gh_t (t)C(3)(l, l +j)G?Lff_t_ j (t) = 0, which proves that 
limt_>=q j (t) = 0. 

The next step consists in proving that 

lira Ct(O(h,h + k) = f(1), 
t--> oo 

We have 

k e Z (4.3) 

G(l)(h,h + k) ~ + r = 

1, F E Z  

= 2 
1 , 1 " ~ _  

_ 1 ("e i k O  ^ A *" - 

[~(O,t) is even in 0]. This shows by the way that C} l) is translation 
invariant. Denoting by ~- the identity matrix we have 

to , , )  =cosN(O)t]  + sin[<O)t] O) 
and therefore 

4~(0, t)2+ (o)~T(o,t) = COS2[t~(O)t]:+ (0)  + sin2[~o(O)t]C(O)2+ (o)~T(o) 

+ �89 {2+ (o )~ r (o )  + GO)2+ (0)} 
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Using simple trigonometrics and observing that (Proposition A.1) terms 
containing the factor exp[i2~o(8)t] vanish in the limit t ~ oo, we get 

2@f_~dOe-ik~189 2+(8)  * * *r = ( 0 ) e  ( 0 ) }  lim Ct(1)(h,h + k) { + 
t - - ~  o o  

which proves Eq. (4.3). Note that this concludes the proof if the initial state 
is translation invariant in the wide sense. 

The final step consists in proving that 

lim Ci2)(h,h + k) =f(2) ,  k E 7/ (4.4) 
t--@ + o o  

Let h, k E 77 be fixed. We have 

C,(2)(h,k) = ~,  ~ ~ h _ z ( t ) ~ ; : _ , ~ _ , , ( t ) -  ~ ,  ~ ,  ~h_,( t )~Tr_,~r_l  , 
l>0 FEZ l<0 FEZ 

Since, as is easily seen, 

, ( ' )~r- ,  ~ [ +  k- , ' ( ' )  = ~ f f  * t) --= 9_ l(t) i' Ez ~" ~ -,,dO e'l~ ~( O' 

with 

8(0, t) - e-ihO f ~ r  " * * * 2 7r dcp e-'k~s~(O - % t )~_ ( ~ ) ~ v ( q), t) 

we find Ct(2)(h, h + k) = ~z<o~t (t) - ~ t>o~t (t) = 2i~(0, t), where ~ is the 
harmonic conjugate of 9. We have (see Ref. 14) 

A A 

, 
~(0, t) = ~ "2 t-an(O~/2) dO = P _ ,,~(0, t)cotan(O/2) dO 

A 

_ 2~r 21 d~p P 2-~an-(~-/2) e 2_ ( O ) ~ r ( % t ) e  - ' ~  

where P denotes the Cauchy principal part. By Proposition A.4 the inte- 
grals 

A 

p f f  Jo e-iho ( 6~'(0 - % t))(~'n) ' = 1 , 2  

are uniformly bounded in ~, and have the following expansion for large t: 
A 

p C "  dO ~ ( 0  - % 0  e - i h ~  sgn[ w'(-- rp) ] 
/ . ,  _ ,r 2 tan(0 /2)  

X(-sin[to(qg)t]5"+cos[~o(q)~t]~(~l , ,  , - - -  ,J 



142 Boldrighinl, Pellegrinotti, and Triolo 

Therefore 

lim 0, t) = lim i dqo sgn o~ (q0 e ,h~ 
t---> + oo t - - > ~  q7 ~r 

X (sin[co(cp)t]~- - cos[co(q>)t]C(q0)} 

x :_ + 

f Tri ;:=dep ~ - -  i k c p  [" A A _ _  A ^ - ~ L~_ (~)er(cp) ~(r (cp) ] sgn [ oY(~) ] 

which proves Eq. (4.4). Theorem 4.1 is proved. �9 
As an example, we deduce the limiting covariance the (generalized) 

Lebowitz-Spohn case, i.e., in the case in which the initial state far away to 
the left and to the right is an equilbrium state with temperature T L, T R 
respectively. In such a case the spectral functions corresponding to the left 
and right covariances are 

~II(O)= Tn( 1/w2(O)O 01) 

(~ = L, R), which gives 

A A .+(O)=T 1 0) , ~ _ ( 0 ) = A T  1/~2(0) 

0 

where T = (TR + TL), A T = (T k - TL). Therefore we have 

f(2)(O)=ATisgn[~~ 1/~0(0) 0 

and we see that the diagonal terms are proportional to the average 
temperature, whereas the off-diagonal ones (related to the heat flux) are 
proportional to the temperature jump. 

Note, finally, that the limit for t ~ - ~ is different, and is obtained by 
changing the sign of f(2). 

The following result gives sufficient conditions for convergence in the 
periodic case. 

Theorem 4.2. Let the covariance C satisfy assumption (i) of Theo- 
rem 4.1, and suppose moreover that there is a positive integer N such that 
C(h,k)= C(h + N,k+ N). Then, if the function w(0) is not (2~r/n)- 
periodic for any divisor n of N, the covariance Ct, t ~ R 1, given by Eq. 
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(4.1), converges, as t o  + oo, to the translation invariant covariance with 
spectral density 

f CO ) = l [hie)  + ~O)h(O)~r(O)] 

where 

N - 1  
1 iO(r--r') (0) h(O) -~ ~] and = ~ C(r, j N  + r')e ijN~ = r,r'=oe g;,r' &/(O) jE~ 

Proof. Note that the matrix { N-1 &.r'),./=o is nonnegative definite, i.e., 

N - 1  N - I  

( G  , gr,r' ,ar ') = E E ~l(a)q(a'fl)a(fl))r or,r" r' 0 
r,r'= 1 r,r'=O a = 1,2 

f l =  1,2 

Therefore h(O) is a nonnegative definite function matrix, and so is f(O). 
Since 

N - - I  
t T Ct(h,h + k )=  2 2 ~ l )N  + r )e~Lh+k-Z'N-/(t) 

l, l' ~E2 r,r'=O 

setting eSZ( P) ( O, t) = e - ip~ 41( O, t) we find 

�9 , ~ [O'~L(h+k--r')gtx~T Ct(h.h + k) = ~, E %5,~-k)(t)(&./)j~. -m- j  ~ l) 
r,r'=O l,j~7~ 

Now, let ~ : R 1 -~ C be a function of period 2~ and set 

. 1 

It is easy to see that the Fourier coefficients of ~ and (N)g are related by 
(N)gk = gku, k ~ Z. Therefore we find, observing that gr,r' is (2~r/N)- 
periodic, 

N - - 1  

C,(h,h + k) = 
r,r'=O 

1 ( '2~r 

(4.5) 

In the integral on the right-hand side all terms have phase factors of the 
type exp( it[oo(O/N + 2~rs/N) +_ ~o(O/N + 2~rs'/N)]}. If s and s' are such 
that the phase factor is not identically unity, the corresponding term 
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vanishes as t---> oo. Therefore 

N - 1  

lim Ct(h,h + k )=  1 s~=ofO 2~ ,~+oo -~ _ f (O/N + 2~zs/N) 

• exp[-i (O/N + 2  /N)]dO 

= fo2~ f ( O lexp( - ikO ) dO 

which proves the theorem. �9 
If f~ is (27r/n)-periodic, with n a divisor of N, the covariance converges 

in general to a limiting covariance which is not translation invariant. This 
can be easily understood since only oscillators at a distance which is a 
multiple of n interact. More precisely, the following result holds. 

Corollary 4.3. Suppose that C satisfies the assumptions of Theorem 
4.2 and that o~ is a (2~r/n)-periodic function, where n is a divisor of N. 
Then the covariance Ct, t ~ R 1, given by Eq. (4.5), converges to a limiting 
covariance Coo which is such that Coo(h, k) = Coo(h + n, k + n), h, k E Z. 

Proof. Carrying out the limit in Eq. (4.5) we have, setting m = N/n ,  

lim Ct(h,h + k) 
t--~ oo 

N - 1  N - I  

_ I ~ ~ fo2~exp(_ikO/N) 
2~N 2 r,r'=O s ,x '  = 0 

s - s '  =jm,j@7/ 

• e x p [ - i ( r  + k -  r')O/N] 

X exp{- i2~r [ s  + h ( s ' -  s) + s ' ( k -  r ' ) ] / N )  

• (g~,r,(O/N) + C(O/N + 2~s /N)  

X gr,r,(O/g)~T(o/g + 2~rs'/N)) dO 

Clearly the right-hand side is n-periodic. �9 
As a consequence, using the main theorem of Section 3, it is easy to 

provide examples of states which converge, as t--> oo, under the action of a 
dynamics satisfying the assumptions of Corollary 4.3, to a non-translation- 
invariant limiting state. In view of the remark above such examples are 
trivial. 

5. C O N S T A N T S  OF THE MOTION AND STATIONARY STATES 

It is natural to expect that infinite harmonic systems somehow inherit 
constants of the motion of the corresponding finite systems. We shall now 
make this statement precise. 
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Consider 2N + 1 oscillators of unitary mass with cyclic boundary 
conditions (i.e., on a circle), moving under the action of a translation 
invariant harmonic force. If (qh, Ph), h = - N . . . .  , N, are the Hamiltonian 
variables and the force matrix is denoted by ~V: 'Vh, k = Vk_ h = Vh_ k, 
h, k = - N  . . . . .  N, the system is conveniently described by the normal 
modes 

N 

1 ~ exp(--i0kh)qh, k = - N , . . . ,  N 
Q k -  (2N + 1) 1/2 h = - N  

where 0 h = 2~rk / (2N+ 1). There is degeneration, since o~2(0~)= ~ V  h 
exp(iOkh ) = ~2(0 g)=  o~2( - Oh), i.e., the normal modes Qg and Q_~ = Qk 
have the same frequency. Consider the constants of the motion e(Ok)= 
~[I Qkl 2+  wE(0k)l Qkl 2] (energy of the normal modes) and a(Ok)= 

�89 QkQg) (angular momentum in the complex Qk-plane: it is 
constant because the corresponding frequencies are degenerate), and their 
linear combinations 

N 

~(N~_ 1 ~ e(Ok)exp(_iOkj)AOk ' 
27r k = - N  (5.1) 

N 

a)N)_  1 ~ a(Ok)exp(_iOkj)AO~ 
27r I ,=-N 

j ----- -- N , . . . ,  N, where AO k = 27r/(2N + 1). The physical meaning of the 
new constants of the motion appears from Eq. (5.1). They are the Fourier 
components of the energy density and of the "angular momentum density" 
of the normal modes in [ - ~r, ~r] (which is the Brillouin zone of our system). 
To go over to infinite systems it is convenient to write them in a different 
way. The finite system under consideration can be equivalently described 
by an infinite periodic chain of period 2 N +  l : x  = ((qk, Pk))kEY with 
Xh+(2N+I) n = X h, h = - N  . . . .  , N, n E L Denoting again by cV the new 
force matrix (which is translation invariant and of range N), and by 
q = {qk)k~Z the sequence of the oscillator positions, it is easily seen that 

N 

~N) = 2N1 k=~_ u 1 [PhPh+j + qh(%q)h+j] (5.2) + 1 

N 
a) N) _ 1 

2N  + 1 g=~-N l (qhPh+J--Phqh+J) (5.3) 

In the general case, if x E %' is not (2N + 1)-periodic (and ~ has infinite 
range), these quantities are not conserved. However, as we shall presently 
show, we can get actual constants of the motion by studying their limits as 
N ~  oo. Note that eo (~v) is the average energy per oscillator in the box 
[ - N , N ] ,  and its~limit as N ~  oo is the usual specific total energy. 
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Actually, for technical reasons, instead of considering the quantities 
~(u) given by Eq. (5.2), we shall examine the quantities 

N 
e:N)-- 2 N + I  1 k=~'aN'21 [PhPh+j "st" (c~fl/2q)h(ct~'l/2q)h+j] (5.2') 

Note that if the limits limN_,o?e~ N), j �9 ?7, exist, then the sequences 
(~(N)}NeZ+, j �9 7] converge to the same limit (see remark at the end of 
Theorem 5.1). 

We shall first show that the quantities ek, ak, k �9 7], formally defined 
a s  

ek(X ) = lim e(N)(x) (5 .4)  
N--> oo 

ak(x ) = lim a(kU)(x) (5.4') 
N-->~ 

where e(k N~, a (u), k �9 7/, are given by Eqs. (5.2') and (5.3), are constants of 
the motion for the infinite harmonic chain. 

We consider first the case of square summable initial data. Set 

S__(O~ 0),  G _ _ ( _ 0  ~), A--GS 
If ~V satisfies Assumptions I - I I I  of Section 2, A, G, and S are bounded 
operators on l 2 (9 l 2. Therefore, if T denotes the shift on % : (TX)k = xk_ 1, 
k �9 7/, the functionals E k (x), 6g k (x), defined on 12 (9 l 2 by 

Ek(X) = �89 S'/2x, T-kS1/2x) 

G(x) = �89 r-~Gx) = �89 ~ (q~p~+~ - ?~q~+~) 
h~7: 

make sense. Note furthermore that the restriction of the evolution ( ~ t ,  
t �9 ~}, defined on %' by Theorem 2.1, to 12 (9 12 is a strongly continuous 
one-parameter group of operators with generator A. 

Lemma 5.1. Suppose that the force matrix ~V satisfies Assumptions 
I - I I I  of Section 2. Then for all t �9 R1 and all x �9 1 2 (9 l 2 

G ( %  x) = G(x) ,  G ( %  x) = G(x),  k �9 

Proos The assertion comes immediately from the relations 

A Tks + TkSA = A TkG + TkGA = 0 
which can be proved by inspection. 
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In order to prove the more general result we need the following 
observations: 

that 

(1) existence of eo(x ) and strict positivity of % imply 

(i) x 2 -- o([h[), (ii) Ileuxll2= O ( N )  

(2) if ~ is a symmetric translation invariant operator on l 2 (9 l 2 such 

[~m,m+gl=ln~l < c,e -c21~1, m, k E Z  

where c l, c 2 are positive constants, then ~ is extendible to %'  and 

II[~,P,c]xll==o(N) 
for every x E %'  such that x # = o(Ihl). [Here PN, N E 7/+, denotes as usual 
the projector: (PNX)h = X h if Ihl << N, = 0 otherwise.] The proof of asser- 
tion (1) is trivial, while assertion (2) is proved as follows. We have 

I E Bk-hXh if Ikl < N 
~ lhl > N 

([~ 'PN]X)k=I E Bk-hXh if I k l > N  
lthl<N 

Now 

f[ ~,e~]~Ir ~= E([~,e.]~)=~ 
k =( )2 ( )2 

= E Skhxh + E E 8k_hX,, 
[kl<N Ihl>g Ikl>N Ihl<<.N 

< max Y,g~-hXh ~ Ig~-hl Ixhl 
Ikl < N Iki <. N -T 

[hl>N 

+ max Y, In, I Y~ In~-hl Ix~l 
Jhl << N "7" Ikl>N 

[hl<N 

Observing that (~  x) 2 = o(Ikl), and that Y~01SN+sl and ~ o = _ o o l n _ u + s l  
are exponentially decreasing in N we have the needed result. 

Now we can prove the following theorem. 

Theorem 5.1. Suppose that the force matrix ~ satisfies Assumptions 
I - I I I  of Section 2, and let { ~ t ,  t E •1} be the evolution on % '  associated 
to ~.  Then, if x ~ % %  such that the limits ek(x ) and ak(X ), k ~ g exist, the 
limits ek (~  t x), a k ( ~  t x )  also exist, and e~(% t x) = ek(X), a k ( ~  t X) = ak(x), 
k for all t ~ R 1. 
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Proos Setting ~ N )  = [PN, S 1/2~ t ] we f ind  

( PNS1/26~Ltx, T-kPNS I/26~Lt x) 

~- ( S1/26~ t PN X, T - k s  1/20"~ t PN X) + ( S 1/26~ t PN X, r - k ~  N)X) 

+ (  N)x,T-kS1/2%PNX) + ( Wx, T-k WX) 

It follows from Lemma 5.1 that 

( S ' /2~ PN x, T - k s  I /26"~L, PN x) = ( S 1/2PNX, T - k s  1/2PNX ) 

Therefore in order to prove that e k is constant it is enough to prove that the 
remaining terms are o(N). This is easily done remembering that the 
evolution coefficients decrease exponentially (in the index), and making use 
of the estimates (1) and (2). For a~ the proof is similar. �9 

Remark. From (1) and (2) it is easy to see that (Eft - e l )  = o(1) as 
N-~ oz. 

The following result shows that the subset of the points x ~ % for 
which the limits ek(X ), ak(X), k ~ 77 exist is "large enough," i.e., it is a set of 
full measure with respect to a large class of states. The conditions on the 
states are convergence of the expected values Ee(ef) ,  ~_e(af) of eft, aft, 
k ~ 77 as N ~  m, plus a condition of uniform integrability and weak 
dependence as in Theorem 3.1. 

Theorem 5.2. Suppose that W satisfies Assumptions I and II of 
Section 2, and let P be a state satisfying the assumptions of Theorem 3.1 
and  moreover  such tha t  the l imits (ek)=l imN_~=Eee i f ,  (ak)  
= limu_~=Eea f exist. Then for P-almost all points x E % the limits ek(x ), 
ak(x ) exist and ek(x ) = (ek), ak(x ) = (ak). 

Proof. We shall prove that the centered variables ~ f  = e f -  Eee f ,  
~ f  = a f  - Eeaf  tend to 0 P-almost everywhere. The proof is based on an 
argument due to Serfling (Ref. 15, Sec. 3.7): it shows that almost sure 
convergence of arithmetic means of random variables follows from some 
mild restrictions on the second moment of their sums. 

Let k E 77 be fixed and set 

bh = ((S1/2X)h,(Sl /2X)h+k),  t)h = bh - ~ebh, 

2 [[T_kSl/2.(a,fl)]l  u2 = lE77 
z--~ 1 L ~ J/ J ,  

(T-ks1/2)t denotes by abuse of notation the 2 x 2 matrix (T-kSl/2)o,l 
(T commutes with S). We have ~N = [1/(2N + 1)]Y, lhl<ub h. The main 
point in the proof consists in showing that 

I~:e(/~h/~h,)[ < g(lh - h'[) (5.5) 
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for some function g :  2+ o R +  such that ~r~176 oo. Clearly ~ e ( ~ )  
< c]~,,l"Ezu 1. Therefore, suppose for instance h' - h = r > 0 and set 

= ( l  = (l,,12,13 ,/4) ~ Z4 : max(l,,/2 ) < [ r / 2 ]  < min(l  3 ,/4) + r} 

we have 

< 
levy 

l ~  
_ 

Using Proposition 2.2 and with simple manipulations it is easily seen that 
the first term is less than 

c 2 ~ Uh_,Uh+ ~_ ,aft ( fl(1,,/3)) (5.6) 
l~ < [r/2] </3 + r 

where fl(ll,/3) = min(r, l 3 + r) - max(0, ll), ~7 = 6 / (4  + ~). Now we have 

(5.6) < e3(AZa~ (r) + A (u * 7)r + A (a* y)~ + (U * ~[ * a)r) = g,(r) 

where A = ~ks~Uk, 7k = a~([k]) for k v a 0 and Yo = 0, ~7 k = u_~, k E 7/, 
and * denotes the convolution. Since (Yk)~Ez ~ /1(Z) and (Uk}k~ z is of 
rapid decrease, g~ is summable. The other term is estimated by 

C4 ~ Uh-,,Uh+g-t2Uh+r-,3Uh+k+~-,,< 4C4 A3 ~ ur=g2(r) 
z ~  ~ Irl >~ [r/2] 

Clearly g2(r) is summable and inequality (5.5) is proved. Now this inequal- 
ity implies that for some absolute constant c 5 

This (linear) bound makes Serfling's theorem applicable (Ref. 15, Theorem 
3.7.3); we conclude that l i m N ~  ~ = 0 P-a.e.. For the constants a~, k E 7] 
the proof goes along the same lines. 

An inspection of Theorems 4.1, 4.2 shows that the class of the limiting 
states which we obtain is the class of the translational invariant Gaussian 
states with zero means and spectral density given by 

g(0) 
1 o~2(0) (5.7) f(o)= 

-s 
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where ~ and/~ are continuous functions with absolutely convergent Fourier 
series, ~ is real nonnegative and even,/~ is purely imaginary and odd, and 
the matrix f(0) is positive semidefinite. We shall call such states admissible 
limiting states. The following result shows that they are obtained by a 
"Boltzmann-Gibbs" prescription. We denote here by %0 the set of finite 
oscillator configurations, which can be considered as a subset of %. 

ProposiUon 5.1. Let P be an admissible limiting state with spectral 
density f given by Eq. (5.4), and moreover such that det f(O) >/e > 0 for all 
0 ~ [ -  ~r, ~r]. Then 

(i) Eee~ = gk, Eea k = h k ,  and 

(ii) P is a Gibbs state with potential H ( X ) = ~ k ~ Z ~ k S k ( X ) +  
/Xkrg k (X), X E %0 where ~k and/~k, k E Z are the Fourier coefficients of the 

A A A A 

functions fl(O) = 2~(0)/[ g2(0) + o~2(0)h"2(0)] and f2(0) = - 2h (0)~02(0) 
/[ ~,2(0) + ~o2(0)h2(0)], respectively. 

Proof. Observe that since ~,/~ have an absolutely convergent Fourier 
series, the same is true for the function ~2 + ~02h~ and, since this function 
does not vanish by hypothesis, the functions fl and 3?2 again have an 
absolutely summable Fourier series (see Ref. 16, Chap. II, Sec. 2). There- 
fore, by a simple extension of a result of Dobrushin (1~) it is easy to see that 
a Gaussian state satisfying our assumptions is a Gibbs state: its potential 
H(x)  is a quadratic form given by the Fourier coefficients of the inverse 
matrix f - i ( 0 )  (see the proof of Theorem 4.1 in Ref. 17). Here 

1 f - ' ( O )  = ~2(0 ) + ~02(0)h,,2(0) [h (0)~02(0) ~(0)  J 

and therefore 

= ( f ] )h -h 'PhP."  + A h - h,qhqh' + (f2) h - h,(qhPh' -- phah ") 
h,h'EZ 

= E {Xk k(x) + 
k ~ E  

which concludes the proof. [] 
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APPENDIX. ESTIMATES OF OSCILLATING INTEGRALS 

We will prove here some results, mainly based on the method of 
stationary phase, which are used in the text�9 

Throughout the appendix f ,  g : R  1 --)R 1 will be 2~r-periodic, at least 
locally summable functions; h will denote the function l~(x , t )= g(x)  
exp[itf(x)] and hk(t ), k E Z, its Fourier coefficients. 

Proposition A.1. I f f  ~ C k+l, k >/2 and there is no point x ~ [ - ~ ,  
~r] for which f ' ( x )  . . . . .  f k ( x )  = O, then 

�9 q7  A 

llm ( h ( x , t ) c l x = O  
t - - >  o o  J - -  r  

Proposition A.2. 
"Y > ~7 we have 

Proof.  The hypotheses imply that f '  has at most a finite number of 
zeros. [If it is not so and ff is an accumulation point of the zeroes we would 
have f ' (~)  . . . . .  f(~)(2) =0.]  Let x 1 . . . . .  X. be the zeroes of f '  and 
suppose that g E C 1. We split the integral in a sum of integrals over small 
intervals I i around xi, i = 1 . . . . .  n plus a remainder, which, integrating by 
parts, is seen to be O(Itl-1). Furthermore, performing a canonical change 
of variables (see Ref. 18, Lemma 1.1.4) we find Ifl, h(x ,  t)dxl  = If~g(q~(Y)) 
exp(i ty ' )dcp(y) ,  where rp ~ C 1, n < k and ~ is an interval containing the 
origin; its length I~1 goes to 0 linearly with II;I. Since g(ep)cp' is continuous, 
applying Erdelyi's lemma (Ref. 18, Lemma 3.1.2) we see that the integral 
over I i goes to 0 as t---)oo. This proves the result for g E C 1; a density 
argument gives the proof for g ~ L I [ -  ~r, ~r]. �9 

If f ,  g E  C 2 and ~=maXx~[_,~,~l l f ' (x) l ,  for any 

lim ~, Ih~(t)l-- 0 
t ---> ~ k ~ Z  

Proof.  Setting a = t / k ,  So(x ) = af(x)  - x we have 

h~(t) = I f"_~ g(x)exp[ i kS . ( x )  ] dx 

Since for ia[ < l \y ,  IS (x)l-- [ a f ' ( x )  - II Iv - ? l / v ,  integrating twice by 
parts we find Ih~(t)l < c / (1  + k 2) for some constant c depending on f, g, 
and y. Therefore 

Ihk(t)l < c ~ 1/(1 + k 2) 
k E Z  k E Z  

Ikl >/vt Ikl/> vt 

which proves the result. �9 
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P r o p o s i t i o n  A.3. Let g E C, and f ~ C 3 be such that the set of the 
points x ~ [ -  ~r, ~r] for which f ' ( x )  = f ' " ( x )  = 0, is empty. Then there is a 
constant C depending on f and g such that 

Ihk(t)l <<. C/(It1113 + 1) 

(ii) 
t E R  I. 

Proof. As in Proposition A.1 above, it is easily seen that the null set 
of f "  is finite. Let Xl . . . . .  x, ,  x 1 < . - .  < x, be these points, and let 

min " ' "  "' 1~ = i=1 . . . . . .  j txi)l. By hypothesis ~/> 0. Set a(t) = IT/t[ -1/3, suppose 
Itl is so large that 

2a(t)  <i,j= 1 min...,n [x i -  xj[ 
i ~ j  

(distances are computed in the S ~ metric), and consider the intervals (in 
S ~ ) 

1 i = [ x  i - , a ( t ) , x  i + a ( t ) ] ,  i =  1 , . . . , n  

Ji = (xi + a( t ) ,x i+l  - a(t)) ,  i = 1 . . . . .  n, 

[ ' In = ( Xn -I" a ( / ) , X  1 - -  a( t ) ) ]  

For t large enough infxEj, I f"(x)l  will be attained at the boundary of ~ ,  
� 9  m f  " i =  1 , . .  n. We have mini= 1 . . . . .  ," x ~ l f  (x)l > ~la(t) and a van der 

Corput estimate (see Ref. 19) gives 

;ih(x,/)dx < r I/2 
^ 

for some constant c'. Since moreover Ifl, h(x, t)dx[ < 211 gll=a(t), we get for 
[t I large enough [hk(t)l < cJltl  1/3, which proves the result. �9 

P r o p o s i t i o n  A.4. Suppose that f satisfies the same assumptions of 
proposition A.1 and that g ~ C 1 Then 

(i) if f'(0) ~ 0, 

lim P f '  ~ 1/~ x, t)sgn[f '(O)] 0 J -  ,~ x ( t )  d x -  ~rih (0, = 
t--> + o o  

Pf~_.(1/x) l~(x  + y,  t )dx  is bounded uniformly for y E [ -  ~r, Tr], 

Proof. We have 

l & x , O , t x = f ,  - .o g ( x )  - g(o)  exp [ i f ( x ) t ] dx  



Convergence to Stationary States for Infinite Harmonic Systems 153 

The first integral vanishes for t-~ oo by Proposition A. 1. If f '(0) -- a ~ 0, 
we have for [x[ < 8, f(x) -f(O) = ax[1 + r(x)] with maxtxl<8[r(x)[ < cl& 
Set z(x) -- x[1 + r(x)], z(x) is differentiable, z(0) -- 0, and z'(x) = 1 + 
s(x), with maxlxl<~[s(x)[ < c 2& Therefore if 8 is small enough we can take 
z as a new variable, and, denoting by ~ the inverse function we have 

P f f8  1 exp[ if(x)t ] dx= exp[ if(O)t ]P f~81  e x p ( i a z t ) - ~  r + o(l) 

We have [z/cp(z)]rp'(z) - 1 = zX(Z), X being a bounded function. Therefore 

lim ( P f?8 l e x p [  if(x)t] dx - exp[ if(O)t]P f ?  8 lexp(iatz)dz } = 0  

Since 

lim ~-8 1 exp(+_ i~wc) dx = + qri 
h__)+oo j_8 X 

assertion (i) is proved. 
To prove assertion (ii), without loss of generality we may assume g = 1. 

Consider the set 18 = {x E S 1 : ix _ xi[ > 28, i = 1 . . . . .  n). For small 8, I 8 
is a union of nonintersecting intervals. Let J be one of them. Clearly 
[ff(x+y)[ > 3 ' > 0  for y E J ,  Ix[ < 8, and f ( x + y ) - f ( x ) = f ' ( y ) x [ 1  + 
ry(x)] where ry(X) is small for Ixl--. 8, uniformly in y ~ J .  Taking z 
= x[1 + ry(x)] as a new variable and repeating the steps in the proof of 
assertion (i), it is easily seen that Pf~8 (1/x)exp[if(x + y)t] dx is uniformly 
bounded for y ~ J. Hence assertion (ii) holds for y ~ 18. Suppose now that 
lY - x;[ < 28 for some i, i = 1 , . . . ,  n. Without loss of generality we may 
assume X i = O. Suppose f '(0) . . . . .  f(m-l)(0) = 0, f(m)(o) = a g= O, for 
some m, 1 < m < k. We can write f(x) = f ( 0 )  + (a/m!)xm[1 + r(x)], 
where r is a function of class C 1 at least and r (0 )=  0. Take as a new 
variable the function 

z = (x + y ) [ 1  + r(x + y ) ] l / m  t*(Y), I*(Y) = y [ 1  + r(y)] 1/m 

Clearly z(0) = 0, z is differentiable in x and z'(x) = 1 + sy(x), with lS(x)l  
< c38 for Ixl --- 8, [yl < 28. Therefore for 8 small enough, denoting by % 
the inverse function of z, we find 

p('Sj_ 8 exp[ if(Xx + y)t] dx= eif(O)tp(.s i(a/m!)t(Zz +/.t ( y ) ) " ]  

z + o(1)  

As above q~)(z)[z/q~y(z)]- 1 = zxy(z ), 6y being a function bounded uni- 



154 

formly in lY[ < 26, Iz[ < 3. To conclude the proof we show that the integral 

c8 exp[iX(z + ~(y))m] 
x) = P L dz 

8 g 

is bounded for all X ~ R 1 and y E ( - 2 8 , 2 8 ) .  Clearly if IXl ~ ( 2 / 8 )  m it is 
bounded, since if tp E C 1 

w(X)x dx < 28 Ixlmax< a [~P'(x)l 

Therefore let iX[ > (2 /6 )  m and suppose for definiteness that X > 0, /~ > 0. 
Set Xl/m~ = v and consider the case v < 1. We have 

]I(y,X)l = [PJ-'~x ~/mfaM/'' ei(W__+v) dw 

<~ p f : 2 e i ( W w V ) m d w - t  - f28Xl/mei(W+~')m~wei(-w+v)mdw 

For v < 1 the first integral is bounded by inequality (A.1). The second 
integral is also bounded, as can be seen integrating by parts. If v > 1, by a 
change of var iables  we find, set t ing fl---pm and 8 ' =  6/~t(26) 
= mino<y<2~8/~(y ) 

II(y,X)l = e ( ~ - '  eifl<u+l) m du I 
J-a#-~  u I /::jleifl<u+l)m--eifl(-u+l)mdU / : '  eifi<u+l;~ du 

< + P  
~/ , U 

Clearly 3' < 1 for 8 small enough. The second integral is bounded for all fl 
by assertion (i). The first integral is bounded by 4//8 ' if 8/~-1 < 2. If 
8/~ -I  > 2 one must add to 4/8 '  an estimate of the integral from 2 to 8/~ -~, 
which is easily done integrating by parts. Similar considerations apply for 
the other choices of the signs of X an/~. Proposition A.4 is proved. [] 
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